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Organization of the Brain
Global facts

I Highly complex system
I Neurons form spatially extended structures
I Transversally made of different layers,
I Sometimes organized in strongly connected columns,
I themselves spatially organized and interconnected,

G. Orr
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Global facts

I Highly complex system
I Neurons form spatially extended structures
I Transversally made of different layers,
I Sometimes organized in strongly connected columns,
I themselves spatially organized and interconnected,

http://psych.unn.ac.uk/users/nick/
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Organization of the Brain
Global facts

I Highly complex system
I Neurons form spatially extended structures
I Transversally made of different layers,
I Sometimes organized in strongly connected columns,
I themselves spatially organized and interconnected,

Bosking et al 1997
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Neurons have a stochastic activity
Stochastic inputs to neurons
Biological recordings of membrane potentials and spike trains
are characterized by a high degree of variability often consid-
ered as random.
Where does noise come from?
Many sources of noise possible all linked with the biological
substrate of neurons, physical and external causes: Thermal
Noise, Ionic conductance noise and synaptic release noise, Ion
channels, Synaptic bombardment, . . .

Rieke et al 1997
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Neural tissue is highly heterogeneous

Heterogeneities
Realistic networks display highly heterogeneous properties:

I quenched heterogeneities in the interconnections: static
disorder related to: : the precise number of receptors
and the extremely slow plasticity mechanisms

I stochastic synaptic transmission: efficiencies
stochastically vary due to: : thermal noise, channel
noise and the intrinsically probabilistic mechanisms of
release and binding of neurotransmitter.

I heterogenenous non-recurrent topologies
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How can we function?

At the microscopic scale:
I The brain is a highly complex system
I Each neuron has a stochastic activity
I and randomly affects postsynaptic neurons neurons

At the macroscopic scale, the brain produces highly
reproducible, appropriate and quick responses to stimuli.

Question
What is the miracle of collectivity?



Mean Field

Dynamics

Jonathan

Touboul

Brain & Neurons

Basics

Collective

Dynamics

Conclusion

Three Phenomena of interest

Pattern formation
Reliable structured dynamical activity is recorded at the surface
of the cortex.

Huang, Wu et al, J. Neuros. 2004
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Three Phenomena of interest

Synchronization
Neurons tend to activate synchronously. Global oscillations

I Serve important functions (G. Buzaki, W. Singer)
I Impairments yield pathological effects (e.g. epileptic

seizures)
I These have been related to abnormal network

heterogeneity
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Three Phenomena of interest

Synchronization
Neurons tend to activate synchronously. Global oscillations

I Serve important functions (G. Buzaki, W. Singer)
I Impairments yield pathological effects (e.g. epileptic

seizures)
I These have been related to abnormal network

heterogeneity (Aradi - Soltesz 2002, J. Physiol.)
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Three Phenomena of interest

Synchronization
Neurons tend to activate synchronously. Global oscillations

I Serve important functions (G. Buzaki, W. Singer)
I Impairments yield pathological effects (e.g. epileptic

seizures)
I These have been related to abnormal network

heterogeneity Kaufman Ziv Plos ONE 2012
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Three Phenomena of interest
Decorrelation

I Strongly connected neurons sharing a large amount of
input show a low correlation level

I which strongly improves coding efficiency

Ecker et al 2010, Science
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Decorrelation

I Strongly connected neurons sharing a large amount of
input show a low correlation level

I which strongly improves coding efficiency

Ecker et al 2010, Science
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The model
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Setting of the problem:

Each neuron has
I A spatial location r 2 � ⇢ d

I Its voltage has a stochastic dynamics (external noise)

dV
t

= f (r , t,V
t

) dt + g(r , t,V
t

)dW
t

I is driven by external currents and its interactions with
other neurons
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Coupling between neurons and plasticity

Neuron i receives at time t the input:

I i
e

(t) = I i
ext

(t) + I i
net

(t)

I I i
ext

(t) are extra-network input
I I i

net

(t) intra-network input
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Coupling between neurons and plasticity

membrane
potential

membrane
potential

Neuron i receives at time t the input:

I i
e

(t) = I i
ext

(t) +
P

N

j=1 J S(V i

t

,V j

t

)
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Coupling between neurons and plasticity

Neuron i receives at time t the input:

I i
e

(t) = I i
ext

(t) +
P

N

j=1 Jij S(V
i

t

,V j

t

)

To model heterogeneities, weights are considered equal to:
I Stochastic synaptic noise: J

ij

are independent stochastic
processes, e.g.: J(r

i

, r
j

) + �(r
i

, r
j

)⇠
t

I Quenched heterogeneity: J
ij

are independent random
variables ⇠ N (J(r

i

, r
j

),�(r
i

, r
j

))
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Coupling between neurons and plasticity

Neuron i receives at time t the input:

I i
e

(t) = I i
ext

(t) +
P

N

j=1 Jij S(V
i

t

,V j

t�⌧(r
i

,r
j

))
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Mesoscopic, spatially extended scale

The model:
I P(N) columns at positions r↵ 2 � (⌦0,F 0, 0) r.v.

iid⇠ �(·)/lambda(�)

I N� neurons in each population
I delays
I Noisy input driven by (⌦,F , ) Brownian motions.
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The neuronal network equations:

Finite network equations: neuron i in population ↵ at r↵
8
>><

>>:

dV i

t

=
⇣
f (r↵, t,V i

t

) + I (r↵, t)
⌘
dt + g(r↵,V i

t

, t)dW i

t

+ 1
P(N)

P
P

�=1
P

N�

j=1
J(r↵,r�)

N�
b(V i

t

,V j

t�⌧(r↵,r�)
) dt

+ 1
P

P
P(N)
�=1

P
N�

j=1
�(r↵,r�)

N�
b̃(V i

t

,V j

t�⌧(r↵,r�)
) dB i�

t
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Organization of the talk

How to analyze collective macroscopic behaviors, and their
relationship with noise levels?
Three Main Topics:

I Noise induced collective oscillations
I Noise-induced pattern formation and spatially extended

limits
I Heterogeneous networks
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Collective Dynamics: The propagation of chaos
and the Mean-Field Equations
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The simplest case:
The network is composed of P populations, homogeneous
recurrent connectivities and no delay:

dV i

t

=
⇣
f↵(V

i

t

) + I↵(t)
⌘
dt + �↵dW

i

t

+
1
P

PX

�=1

N�X

j=1

J(r↵, r�)

N�
b(V i

t

,V j

t

) dt (1)

Theorem
Under relatively weak assumptions on the parameters, we can
show that in the limit N ! 1, all neurons are independent
and have the same probability distribution solution solution of
a mean-field equation. The convergence is in O(1/

p
N)

Proof : coupling method, close to usual proofs of
propagation of chaos, now extended to the
infinite-dimensional space C([�⌧, 0],E ).
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The simplest case:
The network is composed of P populations, homogeneous
recurrent connectivities and no delay:

dV̄ ↵
t

=
⇣
f↵(V̄

↵
t

) + I↵(t)
⌘
dt + �↵dW

i

t

+
1
P

PX

�=1

J(r↵, r�) Z

[b(V̄ ↵
t

, Z̄�
t

)] dt (1)

Theorem
Under relatively weak assumptions on the parameters, we can
show that in the limit N ! 1, all neurons are independent
and have the same probability distribution solution solution of
a mean-field equation. The convergence is in O(1/

p
N)

Proof : coupling method, close to usual proofs of
propagation of chaos, now extended to the
infinite-dimensional space C([�⌧, 0],E ).
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The stochastic limit theorem: a simple principle
The coupling method (Dobrushin 70, Sznitman 89):
Simplified Model:

V i

t

= V i

0 +

Z
t

0

1
N

X

j

S(V j

s

) ds + �W i

t

converges almost surely towards

V̄ i

t

= V i

0 +

Z
t

0
E[S(V̄ i

s

)] ds + �W i

t

.

Take the difference:

V i

t

�V̄ i

t

=

Z
t

0

1
N

X

j

S(V j

s

)�S(V̄ j

s

) ds+

Z
t

0

1
N

X
S(V̄ j

s

)� [S(V̄
s

)] ds

and using independence of V̄ j :

[
1
N

X
S(V̄ j

s

)� [S(V̄
s

)]]  [| 1
N

X
S(V̄ j

s

)� [S(V̄
s

)]|2]1/2  Kp
N

yielding [sup0tT

|V i

t

� V̄ i

t

|]  K

0
p
N
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Firing-rate networks

f (X ) = �X , b(x , y) = S(y).

dV i

t

=
⇣
�V i

t

+I↵(t)+
PX

�=1

J(r↵, r�)

N�

N�X

j=1

S(V j

t

)
⌘
dt+�↵dW

i

t

converges, when all N↵ ! 1, towards:
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Firing-rate networks
f (X ) = �X , b(x , y) = S(y).

dV i

t

=
⇣
�V i

t

+I↵(t)+
PX

�=1

J(r↵, r�)

N�

N�X

j=1

S(V j

t

)
⌘
dt+�↵dW

i

t

converges, when all N↵ ! 1, towards:

dV ↵
t

=
⇣
� 1

⌧↵
V ↵
t

+
PX

�=1

J↵�E[S(V �
t

)]
⌘
dt + �↵dW

↵
t

I We have a uniform propagation of chaos property
towards the unique solution of the MFE

I The unique solution of the MFE is a Gaussian process
I The mean and standard deviation of the solution satisfy

a set of coupled ordinary differential equations
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Exact Reduction to ODEs
The mean and standard deviation of the Gaussian solution
satisfy the set of ordinary differential equations:
(
µ̇↵(t) = � 1

⌧↵
µ↵(t) +

P
P

�=1 J↵�f (µ� , v�) + I↵(t)

v̇↵ = � 2
⌧↵

v↵ + �2
↵(t)

(2)

where f (µ, v) = E(S(G )) where G is a Gaussian process
with mean µ and standard deviation v . For instance, if
S↵(x) = erf (g↵x + �↵), we have:

f↵(µ, v) = erf

 
g↵ µ+ �↵p

1 + g2
↵v

!
.

Noise-induced phenomena
The stochastic dynamics of the cells in the macroscopic limit
is governed by ODEs where noise appears as a parameter!
Bifurcation theory as a function of �↵ allows to uncover noise-
induced transitions!
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Noise-induced synchronization

Role of the additive Noise
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Generation of oscillations
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Network Dynamics
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Towards a Dynamical Systems analysis of MFE?
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Conclusion
I Neurons act as a statistical sampler: each neuron

provide an independent realization of the same process
I The dynamics is reduced to a small set of equations, but

with a more complicated dynamics
I Accounts for our biological phenomena of interest:

reliability, decorrelation
I Noise induces oscillations in finite-populations systems!

But the brain is more complex
I In macroscopic limits (finite populations networks),

heterogeneities need to be taken into account in the
connectivity map and delays

I Can we obtain mesoscopic limits at intermediate scales
resolving spatial finer structures of the brain?
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Mesoscopic Models
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How about spatially extended systems?

I Any approximation of a continuous neural field has the
property of propagation of chaos and convergence
towards an equation of McKean-Vlasov type.

I However, noise is independent population per population
. . .

Continuous Neural Field
The possible continuous neural field equation will involve a
singular Brownian motion. The solutions will not be measur-
able with respect to (�,B(�)). Do the same result hold in a
continuum limit?
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Infinite number of populations:

Neuron i in population ↵ at r↵
8
<

:
dV i

t

=
⇣
f (r↵, t,V i

t

) + I (r↵, t)
⌘
dt + g(r↵,V i

t

, t)dW
t

(r↵)

+ 1
P(N)

P
P(N)
�=1

P
N�

j=1
J(r↵,r�)

N�
b(V i

t

,V j

t�⌧(r↵,r�)
) dt

Theorem
Under the assumption that:

"(N) :=
1

P(N)

P(N)X

�=1

1
N�

! 0,

we have propagation of chaos, and convergence towards a non-
local mean-field equation.
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Infinite number of populations:

Neuron i in population ↵ at r↵
(
dV i

t

=
⇣
f (r↵, t,V i

t

) + I (r↵, t)
⌘
dt + g(r↵,V i

t

, t)dW
t

(r↵)

+
R
�

�
J(r↵, r 0)

Z

[b(V i

t

,Z
t�⌧(r↵,r 0)(r

0))]
�
dr 0 dt

Theorem
Under the assumption that:

"(N) :=
1

P(N)

P(N)X

�=1

1
N�

! 0,

we have propagation of chaos, and convergence towards a non-
local mean-field equation.
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Remarks on the Brownian motions

The BM W
t

(r) and B
t

(r , r 0) are termed chaotic Brownian
motions:

I W
t

(r) and W
t

(r 0) are independent Brownian motions
for r 6= r 0

I B
t

(r1, r2) and B
t

(r 01, r
0
2) are independent Brownian

motions for r
i

6= r 0
i

I These are not measurable functions of (�,B(�))



Mean Field

Dynamics

Jonathan

Touboul

Brain & Neurons

Basics

Collective

Dynamics

Conclusion

The mesoscopic equation

(
dV

t

(r) =
⇣
f (r , t,V

t

(r)) + I (r , t)
⌘
dt + g(r ,V

t

(r), t)dW
t

(r)

+
R
� J(r , r

0)
Z

[b(V
t

(r),Z
t�⌧(r ,r 0)(r

0))]d�(r 0) dt

How do we make sense of this equation?
I The process is not measurable wrt (�,B(�))
I However, the law of the process dp(t, r , x) will be

measurable
I This allows computing the expectation term as
Z

�
J(r , r 0)

⇢Z

E

b(V
t

(r), y)dp(t � ⌧(r , r 0), r 0, y)

�
d�(r 0)
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The mesoscopic equation

(
dV

t

(r) =
⇣
f (r , t,V

t

(r)) + I (r , t)
⌘
dt + g(r ,V

t

(r), t)dW
t

(r)

+
R
� J(r , r

0)
Z

[b(V
t

(r),Z
t�⌧(r ,r 0)(r

0))]d�(r 0) dt
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I This allows computing the expectation term as
Z

�
J(r , r 0)

⇢Z

E

b(V
t

(r), y)dp(t � ⌧(r , r 0), r 0, y)

�
d�(r 0)
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⇣
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⌘
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t

(r), t)dW
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R
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Z

�
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⇢Z

E

b(V
t
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�
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Existence and uniqueness of solutions

Theorem

For any (⇣0
t

(r), t 2 [�⌧, 0], r 2 �) 2 M2(C ([�⌧, 0], 2(⌦0))
a square-integrable process, the mean-field equation with

initial condition ⇣0
has a unique strong solution on [0,T ] for

any T > 0.
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Second Step of the proof: The propagation of
chaos and convergence to the MFE

Coupling method:
Problem: We need to coupled a finite-dimensional process V i

t

solution of the N-neurons network and an
infinite-dimensional chaotic process solution of the MFE.
Solution: (W̃ i

t

) governing neuron i in the network and
⇣ i 2 M(C⌧ ) the IC.
Coupling in the dynamics: Let
(W

t

(r)) 2 M(C [0,T ], 2(�, m⇥d)) chaotic BM
independent of the processes (W̃ j

t

) and define the process
(
(W i

t

(r)) = (W
t

(r)) r 6= r↵

(W i

t

(r↵)) = (W̃ i

t

)
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Second Step of the proof: The propagation of
chaos and convergence to the MFE

Coupling method:
Problem: We need to coupled a finite-dimensional process V i

t

solution of the N-neurons network and an
infinite-dimensional chaotic process solution of the MFE.
Solution: (W̃ i

t

) governing neuron i in the network and
⇣ i 2 M(C⌧ ) the IC.
Coupling of the IC: Define a process
(⇣̃0

t

(r)) 2 M2([�⌧, 0], 2(⌦0)) equal in law to (⇣0
t

(r)) and
independent of ⇣ i

t

, and
(
⇣ i ,0
t

(r) = ⇣̃0
t

(r) r 6= r↵

⇣ i ,0
t

(r↵) = ⇣ i
t
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Propagation of chaos

Theorem

Let i 2 a fixed neuron in population ↵. For almost all

realizations of the population locations (r↵,↵ 2 ), the

process (V i ,N
t

, t  T ) solution of the network equations

converges in law towards the process (X̄
t

(r↵), t  T )
solution of the MFE with IC (⇣0

t

(r)). Moreover, if f and g
are globally Lipschitz-continuous we have, for any T > 0:

max
i

h
sup

�⌧sT

|X i ,N
s

�X̄ i

s

(r↵)|2
i
= O

✓
"(N) +

1
P(N)

◆
(3)

JT, Annals of Applied Probability, 2013
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Firing-rate networks

f (r , t,X ) = 1/✓(r)X + I (r , t), g(r , t,X ) = ⇤.

dV i

t

=
⇣
� 1
✓(r↵)

V i

t

+I (r↵, t)+

P(N)X

�=1

J(r↵, r�)

N�

N�X

j=1

S(V j

t

)
⌘
dt

+ ⇤dW i

t
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Reduction to a system of integro-differential
equations:

Theorem

The solution of the MFE is Gaussian N (µ(r , t), v(r , t)) with:

8
>>>><

>>>>:

@µ
@t (r , t) = � 1

✓(r)µ(r , t) +
R
� �(r

0)dr 0J(r , r 0)

f (r , µ(r 0, t � ⌧(r , r 0)), v(r 0, t � ⌧(r , r 0))) + I (r , t)

@v
@t (r , t) = � 2

✓(r) v(r , t) + ⇤2(r , t)

(4)
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Role of noise: spatially homogeneous solution

1 2

+

+

-

-

Constant input, constant identical noise coefficients,
J(r , r 0) = J(r � r 0), � = 1.
Theorem: Spatially homogeneous solutions
For any spatially homogeneous initial condition, there exists a
unique spatially homogeneous solutions, i.e. solutions whose
law is independent of r 2 �.
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The spatially homogeneous state

(
µ̇↵(t) = � 1

⌧↵
µ↵(t) +

P
P

�=1 J↵�f (µ� , v�) + I↵(t)

v̇↵ = � 2
⌧↵

v↵ +
P

P

�=1 �
2
↵�f (µ� , v�)2 + �2

↵(t)
(5)
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Effect of Noise: Dynamic Turing Patterns

0 1

t
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3
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(a) ⇤ = 1

0 1

t

200

3

-3

(b) ⇤ = 1.6

0 1

t
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t
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Macroscopic Models with spatial heterogeneities
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Heterogeneous networks
Problem
Large-scale model may gather the activity of cells that are
anatomically remote. In that case, the homogeneity of delays
and recurrent connectivity no more hold:

I Cells tend to preferentially connect to anatomically close
ones

I Delays are proportional to the distance

Here, we shall consider a distribution of neurons in a space
� ⇢ d and assume that the connectivity and delays are
function of the distance between neurons: e.g. for neuron i
located at r

i

and j at r
j

:

I J
ij

=

(
J �(r

i

� r
j

)

0 1 � �(r
i

� r
j

)

I ⌧
ij

= ⌧
s

+
|r
i

�r

j

|
c
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Heterogeneous networks

Question
Does the heterogeneity play a role in the qualitative dynamics?
To answer this question, we prove the following result for ran-
domly connected networks with random delays

Theorem
Assuming (J

ij

, ⌧
ij

)
j

iid with law ⇤↵� , we have quenched (for
a.a. realization of the ⌧

ij

) propagation of chaos and conver-
gence towards a distributed delayed McKean-Vlasov equation.
The limit equation involves the effective interaction term:

PX

�=1

Z Z 0

�1
j [b(X �

t�s

)]d⇤(j , s)
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Networks in a box

We now consider the following simple example:
I Assume that neurons are uniformly distributed on S

a

the
periodic interval [0, a]

I The distribution of the distance can be computed in
closed form and depends on a

I the law of ⌧
ij

= |r
j

� r
i

|/c + ⌧
s

is known in closed form
I Small-world type of connectivity: connection with

probability �(r) = e�r/r
0
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Size-induced transitions

I Firing-rate model (hence, Gaussian solutions etc. . . )
I Assuming S(0) = 0, I = 0, µ = 0 is a solution, whose

stability is governed by the real part of the characteristic
roots ⇠

⇠ = �1
✓
+

Jgp
2⇡(1 + g2�2/2)

Z 0

�⌧
e⇠sd⌘(s).

I Hopf bifurcations when 9⇠ = i!, yielding for ⌦ = ! a
the parametric Hopf bifurcation curve:
8
<

:
a2 = ⌦2

� 1

✓2

+|Z(⌦)|2

⌧
s

=
�
�⇡

2 + Arg(Z (⌦))� tan
�
⌦✓
a

�
+ 2k⇡

�
a

⌦ .
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Size-induced transitions

JT, J. Stat. Phys. (2013)
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Conclusion

I Noise is not only perturbing the solution, it induces
qualitative changes in the dynamics

I Similar phenomena occur in disordered networks.
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Conclusion

I Noise is not only perturbing the solution, it induces
qualitative changes in the dynamics

I Similar phenomena occur in disordered networks.
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Topological and Dynamical Complexity at the

Edge of Chaos
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What Physicists know since a quarter of century
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Sompolinsky-Crisanti-Sommers
The model: 1 population, Centered sigmoids, centered
coefficients J

ij

⇠ N (0,�2/N), no input and no noise:

ẋ i
t

= �x i
t

+
X

j

J
ij

S(x j
t

)

I Dynamical mean-field theory: ẋ
t

= �x
t

+ Ux

t

with Ux

t

centered Gaussian process with covariance
[Ux

t

Ux

s

] = �2 [S(x
t

)S(x
s

)]
I Phase transition at � = 1 between a regime with unique

attractive fixed point (0) and a chaotic behavior for
� > 1, characterized by a Lyapunov exponent equivalent
to (� � 1)2/2 for � close to 1.

(e) � = 0.7 (f) � = 1.3
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Sompolinsky-Crisanti-Sommers
The model: 1 population, Centered sigmoids, centered
coefficients J

ij

⇠ N (0,�2/N), no input and no noise:

ẋ i
t

= �x i
t

+
X

j

J
ij

S(x j
t

)

I Dynamical mean-field theory: ẋ
t

= �x
t

+ Ux

t

with Ux

t

centered Gaussian process with covariance
[Ux

t

Ux

s

] = �2 [S(x
t

)S(x
s

)]
I Phase transition at � = 1 between a regime with unique

attractive fixed point (0) and a chaotic behavior for
� > 1, characterized by a Lyapunov exponent equivalent
to (� � 1)2/2 for � close to 1.

(g) � = 0.7 (h) � = 1.3



Mean Field

Dynamics

Jonathan

Touboul

Brain & Neurons

Basics

Collective

Dynamics

Conclusion

Quenched Synaptic Heterogeneity

dV i

t

=
⇣
f (V i

t

) +
NX

j=1

J
ij

S(V j

t�⌧↵�
) + I

e

(t)
⌘
dt + �dW i

t

I J
ij

are random, Gaussian, independent, with statistics
only depending on the pre- and postsynaptic populations

J
ij

⇠ N
✓

J̄↵�

N�
,

�↵�p
N�

◆
.

I I
e

(t) are deterministic inputs only depending on the
population of the neuron

I � is the variance of the Brownian inputs.
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The Mean-Field Equation
We can show that the empirical measure

µ̂
n

=
NX

j=1

�
V

j

satisfies a large deviation principle and converges towards the
solution of the Mean-Field Equation:

dV
t

=
⇣
f (V

t

) + UV (t) + I
e

(t)
⌘
dt + �dW

t

I V 2 P is a process having the law of any vector
(V

i

1

, . . .V
i

P

) for i
k

neuron of population k .
I UV (t) is the effective interaction process, a Gaussian

process of parameters
8
>>>><

>>>>:

⇥
UV

↵ (t)
⇤
=
P

� J̄↵�E[S(V
�
t�⌧↵�

)];

Cov(UV

↵ (t),UV

↵ (s)) =
P

� �↵��
V

↵�(t, s) where
�V

↵�(t, s) = E
h
S(V�(t � ⌧↵�))S(V�(s � ⌧↵�))

i
;

Cov(UX

↵ (t),UX

� (s)) = 0 if ↵ 6= �.
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Firing rate equations
In the case of firing rate neurons

I solutions are Gaussian
I The dynamics of the moments is not a dynamical

system:
8
>><

>>:

µ̇↵(t) = � 1
⌧↵
µ↵(t) +

P
P

�=1 J↵�f�(µ� , v�) + I↵(t)

C↵(t, s) = e�(t+s)/⌧↵
h
e2t

0

/⌧↵C↵(t0, t0)+

�2PP

�=1
R
t

t

0

R
s

t

0

e(u+v)/⌧↵E
h
S(V �

u

)S(V �
v

)
i
dudv

i

.
However

I � 7! v↵(t) = C↵(t, t) is non-decreasing
I The mean equation is identical to the synaptic noise case
I Increasing � hence yields transitions to synchronized

oscillatory activity
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Beyond Sompolinsky model:
Excitatory and Inhibitory networks
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Beyond Sompolinsky model: effect of delays

T. Cabana, JT, J. Stat. Phys. (in revision, 2013)
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What happens at the phase transition?

Let us start by characterizing fixed points (or singular points)
of the dynamics:

x = J.S(x)
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A longstanding problem in physics and spin glasses

[Disclaimer: Please don’t ask me more detail!]
Singular (metastable points) of the potential seem to have a
determinant impact on the behavior of the system at the
phase transition.
Recently, mathematicians looked at the problem using
random matrices theory and probability analysis provide
estimates of the number of critical points
Fyodorov, Auffinger & Ben-Arous
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The supercritical case � > 1

Result
We have an exponentially large number of fixed points. The
exponent (topological complexity) behaves as the Lyapunov
exponent at the edge of chaos.

Proof: Inspired by Fyodorov and Ben-Arous, we use the
Kac-Rice formula, that gives the number of a solutions of
random algebraic equations.
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The supercritical case � > 1

We denote by A
n

(�) the number of fixed points of the
system.

[A
n

(�)] =

Z

n

dx


| det(�I+J.�(S 0(x)))|⇥�0(�x+J.S(x))

�
.

Now what?
(i) there is no underlying energy landscape, the system is

not Hamiltonian and
(ii) symmetry properties are relatively weak and do not

enable the same drastic simplifications obtained in
Fyodorov or Ben-Arous works.

(iii) The determinant of the matrix is unknown...
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The supercritical case at the edge of chaos

Near criticality � = 1 + " with 0 < " ⌧ 1, we can obtain a
first order estimate of the number of equilibria.
(i) Show that equibria remain in a small neighborhood

B⇢(") of 0 with arbitrarily high probability 1 � ⇠(")
[tricky...]

(ii) This implies that:

[A
n

(�)] = [| det(�I + J)|] + O(⇢(") + ⇠("))

(iii) To evaluate this formula, we first compute the logarithm
of the determinant:

1
n

log | det(�I + J)| =

(iv) c(�) = log(�) + 1
2

� 1
�2

� 1
�
⇠1+ (� � 1)2
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The supercritical case at the edge of chaos
Near criticality � = 1 + " with 0 < " ⌧ 1, we can obtain a
first order estimate of the number of equilibria.
(i) Show that equibria remain in a small neighborhood

B⇢(") of 0 with arbitrarily high probability 1 � ⇠(")
[tricky...]

(ii) This implies that:

[A
n

(�)] = [| det(�I + J)|] + O(⇢(") + ⇠("))

(iii) To evaluate this formula, we first compute the logarithm
of the determinant:

1
n

log | det(�I + J)| = 1
n

X

�2sp(J)

log |�� 1| = c(�) + R(n)

with c(�) =
R
C log |z � 1|µ�(dz) with R(n) ! 0.

(iv) c(�) = log(�) + 1
2

� 1
�2

� 1
�
⇠1+ (� � 1)2
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The supercritical case at the edge of chaos

1
n

log [A
n

(�)] ⇠ en(��1)2
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What happened to Sompolinsky’s neurons?

This explains the dynamical complexity...
I But how far?
I In particular, �(�) / c(�) at the edge of chaos...

Coincidence?
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Coincidence?

If this is the case, simpler models have the same property...
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Fakir’s bed

Check out the movie.
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Lyapunov vs Number of unstable singular points
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G. Wainrib, JT, Phys. Rev. Letters (2013, Editors’ selection)
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Consequences
In the finite-dimensional case, we recover our collective phe-
nomena of interest:

I reliable response in law
I fluctuations are uncorrelated (they are even

independent)
I Synchronization phenomena
I and transition to dynamical chaos
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A limitation?

Beyond Firing-rate models:
The approach is very general, but unfortunately we were able
to analyze them only in the firing-rate mode.

Appetizer: The Fitzhugh-Nagumo model with electrical
synapses.
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Excitable membranes: Stochastic Synapses
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Excitable membranes: Quenched Heterogeneity
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Big Ups

Geoffroy Hermann Gilles Wainrib
Ref:
JT, Physica D 2012, JSP 2012, Ann. Appl. Proba. (2013)
with G. Hermann: Heterogeneity-induced oscillations, PRL 2012
with G. Wainrib: Topological Complexity, PRL 2013 with T.
Cabana: Large Deviations (2013, submitted)
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The role of Noise, Disorder and Heterogeneity
in macroscopic activity

Jonathan Touboul

Mathematical Neuroscience Team, Collège de France &
Inria, Mycenae Team

Between Theory and Applications: Mathematics in Action
- Bedlewo - May 2015
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